03/12/11

“From fork to friend”

Recently, I attended an Adelaide University event called Research Tuesdays, where one receives a free ‘crash course’ of sorts, with the university promoting their recent research projects.  The hour-long session was called “Animals in Society – from fork to friend”.  It basically was a brief consideration of research being undertaken regarding many facets of animals.  The professor running the topic was Gail Anderson, from the school of veterinary science.

She explained how research on animals has taken place mostly concerning the human benefits involved. Production animals (such as cattle, pig, alpacas, etc) have a financial appeal to people.  Animals have also been useful as models for human disease, and studying therapies for those diseases. Research concerning wild animals often has an overarching environmental aim. There was also a mention of animals used in ‘recreation’, such as racing animals.  Finally, the category of companion animals was considered, and that this was an expanding field as there are ongoing discoveries regarding the human-animal bond.

I will briefly summarise the other categories before considering the companion animals in more detail.

Firstly, production animals need to be as profitable as possible – so research is ongoing into the best way to increase profits from animals.  Additionally, there is increasing concern regarding animal welfare and sustainability of practices.  All of these are research pressures in the production animal industry.

Animal welfare allows for the use of animals in experimental conditions, such as testing human treatments.  There are obviously ethical issues concerned, and there is concern from animal rights groups, as well.

Research into wildlife seeks to maintain environmental populations, discover “extraordinary metabolic pathways”, and otherwise use animals (such as frogs) as environmental indicators. Emerging diseases may also be found in wildlife.

Recreational animal research is often centred around welfare, but also ‘increasing speed’ (and so financial gain).  In terms of dogs, there are studies being commenced that attempt to measure heat stress, and its implications, on racing groups. Particular, methods of ‘cooling’ after racing will be considered. The ultimate aim of this research is to establish welfare protocols – so potentially establish a ‘too hot to race’ policy, and a universally effective method for cooling animals down.

Companion animals, admittedly, were a small segment of the talk. Anderson explained how 63% of Australian households (and 62% of USA households) have pets. As many pet owners place their animal’s health before their own, and prefer their pet’s company to people, then this poses ‘risks’ to people that risk their own well being for the sake of their pet.

We also need to consider the therapeutic value of companion animals – with proven studies shown that touching animals reduces blood pressure, and that caring for animals empowers people.  There was also mention made to the fact that there is a strong relationship between harm to animals and harm to children.  (That is, if a vet sees animals being harmed in a household with children, serious consideration should be given to the wellbeing of those children.)

Companion animal treatments are becoming increasingly specialised.  Vets are becoming specialists in fields or in particular animal species.  Animals that are of particular benefit to people, such as guide dogs, are privy to methods to determine hip dysplasia and arthritis earlier, prevent its onset, and also prevent its occurrence by genetic screening.

This is a brief overview of what was overall a brief session, but I hope it is of a small interest to those involved in animals in some way.

(On a side note, question time revealed that cortisol levels are reflective of stress, but that handling of animals in order to obtain samples can increase the stress of animals and so also cortisol levels.  This has implications for the changes seen in Belyaev’s fox experiment, as the difference between the domesticated and undomesticated foxes could have been exaggerated due to undomesticated foxes being more stressed from handling, and so revealing a higher cortisol level.)

02/26/11

Belyaev’s Fox Experiment – Index

After frequently finding myself encountering references to Belyaev’s fox experiment in a number of dog-related texts, I felt the need to investigate his experiment more thoroughly.  This has resulted in a lot of reading, but a lot of new found knowledge.  From this reading, I hope to have a better understanding of the connection dog-authors are trying to make between dogs and the fox experiment. I hope it also proves useful for my readers.

Part I – Introduction
A summary of the work of Belaev in his ongoing experiment with foxes.

Part II – Changes
Description of the changes observed in Belyaev’s fox experiment.

Part III – Answers
Possible reasons for the changes seen in the foxes in Belyaev’s experiment.

Part IV – Dogs?
Why does the Belyaev fox experiment matter to dogs?

I hope this series has been of interest, as I thoroughly enjoyed researching.  I did cut out some bits and pieces, so please feel free to comment if you feel I haven’t answered a burning question for you! Additionally, if you would like in text referencing, I can provide such.

References: Continue reading

02/26/11

Belyaev’s Fox Experiment – Dogs? – Part IV

This post is part of the series on Belyaev’s fox experiments.
(index | part I | part II | part III | part IV )

You may have read my previous three posts, which have explained details of Belyaev’s fox experiment.  And you may have wondered the relevance of studying foxes on a blog about dogs.

Obviously, foxes are not dogs. They’re not even wolves. However, they aren’t far off it.  Regions of fox chromosomes correspond with those of the dog (to be specific, fox chromosome 1 seems to indicate a fusion between chromosomes 1, 33 and 12 as we see today in the dog).  That means that we should not disregard this research because it is a different species.

Chiefly, this study can be used to examine the process of dog domestication. Because domestication and associated variability seemingly occurred relatively quickly, there have been doubts that Darwinian theories are applicable. However, this study shows that significant changes can be seen in a brief period of time and generations. Coppinger (in his book Dogs) uses this study to show how quickly a significant change can take place – in the foxes here, significant morphological and physiological changes were seen in just 8-10 generations. This all occurred with just one selection pressure – selecting for ‘tameness’.

Dogs are very different to wolves.

This is surprising on a surface level, but when considering the causes of these changes it is not so remarkable.  Indeed, these changes have been seem occur in a similar way in terms of wolf’s domestication to dogs.  For example, dogs play as adults while wolves do not, and dogs carry many other juvenile-wolf characteristics.  Furthermore, dog puppies respond to human cues like fox domesticated pups and indeed are ‘dog like’ in many behavioural ways.  It is likely that the causes of the foxes changes are also the reason the wolf is the dog we know today.

On a larger scale, this research shows that we can select for nature.  Consider that these dogs were never trained, but were selected on their genetic amicability to humans.  This is a loud message on how we should be selecting dogs to breed from.

I hope this series has been of interest, as I thoroughly enjoyed researching.  I did cut out some bits and pieces, so please feel free to comment if you feel I haven’t answered a burning question for you! Additionally, if you would like in text referencing, I can provide such.

References: Continue reading

02/19/11

Belyaev’s Fox Experiment – Answers – Part III

This post is part of the series on Belyaev’s fox experiments.
(index | part I | part II | part III | part IV )

There are several theories that have been put forward regarding the origins of the physical characteristics seen in Belyaev’s foxes.  I will rebut some theories, and consider the plausibility of others. There are no definite answers, just some realistic theories.

Experimenter bias

One of the most popular anecdotal suggestions is that perhaps the experimenters unconsciously selected for more dog-like physical characteristics.  Personally, I think this illustrates a lack-of-faith in the scientific method.  The nature of the tests has been clearly outlined, and we must have confidence that this method was adhered to.  If there were serious doubts, the method allows for replication.  As replication has not occurred (mostly due to expense inhibiting the experiment) we can conclude that the experiment’s results are plausible in its current form. (The empirical world loves nothing more than proving others ‘wrong’ through replication.)

Mutations and Inbreeding

Another loud argument is the notion that the initial stock was carrying mutations or unusual traits, or that these changes were as a result of mutations.  Because of the inbreeding of the experiment, these mutations were amplified. This can be rebutted in a number of ways.

Firstly, the foxes were not inbred.  This fox population was frequently outcrossed to other commercial fox farm stock, and this has meant that the domesticated fox population has an inbreeding coefficient of 0.02 to 0.07.

Secondly, many of the novel traits outlined in part II are in fact not recessive. This means that the foundation population’s mutations would have been apparent on commencement of the experiment. This was not the case – these traits became apparent over the course of the experiment, and not in the beginning stages.

Another idea is that random mutations are the cause of these traits.  However, Belyaev determined that the rate of change in the domesticated strain was “2 or 3 orders higher than the expected frequency of spontaneous mutations”. This means that it probably not mutations that have caused the changes documented.

If we consider the mutation route as plausible, the suggestion with the most worth is Vavilov’s theory of homologous variability.  Vavilov’s theory suggested that similar gene sets can give rise to similar mutations, and so we can apply the term ‘similar gene set’ to all foxes, and mutations to their unique traits. This explains how foxes, despite being unrelated, developed similar traits just by the nature of being a fox with a fox gene set.

However, mutations probably did not have a role in the changes seem in the foxes.  What is more likely is that behaviour and anatomy may be linked in some way.

Depigmentation is a characteristic in dogs that was also seen in domesticated foxes. Photos © Ruthless Photos

Depigmentation is a characteristic in dogs that was also seen in domesticated foxes.Photos © Ruthless Photos

Selecting for many genes

The behaviour of ‘tameness’ is a varied trait, and so is controlled by a number of genes.  Because there are a number of genes involved, this means that selecting for tameness, and so also a number of genes, could have a profound affect.

Selecting for important genes

However, what is a more convincing suggestion is that perhaps this rapid change may have been as a result of selection may have been acting on relatively few genes, and genes that have an important regulatory role.  This would mean that if a ‘master’ gene was being selected for, this could have far reaching implications.  Here we reach the most convincing theory: That selecting for tameness was selecting for a major, complex, hormonal regulatory gene (or genes) which has far ranging implications on the rest of the animal.

The traits in foxes are found in many different domesticated species. Because of these similarities, Belyaev thought that early changes for amenability to domestication must be related to domesticated physiologies.  Because behaviour is regulated by neurotransmitters and hormones, modifying these elements through selecting behaviour would also have affects physiological parts of the animal.  Even though mammals are varied, their physiological processes are quite similar (their hormones, neurotransmitters, etc) – so this would be the basis for many domesticated mammal species showing similar traits.

Domestication/tamability is behaviour that is rooted in physiological changes and systems (e.g. hormones and neurochemicals).  Changing these complex systems would have far-reaching effects on the development of the animals themselves. And as all mammals are controlled by similar bigger-regulatory systems, this is seen as a reasonable explanation for the changes.

Hormone selection

‘Tameness’, ‘nervousness’ and ‘aggression’ is probably controlled by the endocrine system.  As described in the last post, serotonin, corticosteroid, cortisol, and adrenocorticotropic hormone were all found to be reduced in domesticated foxes. These hormones are responsible for behaviour that was selected for.  However, these hormones have a much bigger role in the endocrine system, so selecting for hormones would have had an extensive role and account for many of the changes observed in the domesticated animals.

Indeed, even the colour changes seen can be accounted for by hormones.  Hormones are linked to pigmentogenesis, agouti, and melanin.  The endocratic system can also explain the moulting changes in the domesticated foxes.

The endocrine system can explain many of the changes in the domesticated foxes behaviour, but this system also has a big role in development.  In selecting for genes that control behaviour, selection was also made for genes that control development.

The presence of juvenille traits (e.g play) in adult dogs was also seen in foxes. Photos © Ruthless Photos

Development mechanisms

The characteristics that the foxes adopted are those that are similar to juveniellism.  In this way, the development of the domesticated foxes can be described as ‘retarded’, as even adults have juvenile behaviours.  In this way it is thought that genes responsible for development have in some way been selected for.

These developmental changes start from embryos, with the hormones already described affecting the whole development process.  Even colouration/pigmentation has been linked to melanocyte and melanoblast activity in embryonic stage.  Neucrocrest cell migration would be delayed, which means messages to mature would not get to some body parts.  This would also have implications to the socialisation period, and be responsible for the floppy ears. Changes in the maturation timing have been seen.

Behaviour selected for seems to have been controlled by a few genes, but these genes were also responsible for a high level of regulation (i.e. hormonal level, and influencing development) and hence the foxes had a range of phenotype changes that accompanied the selected behaviours.

This is what domestication looks like

The literature review strongly stated that domesticated foxes, and their characteristics, are not terribly surprising.  Belyaev says that the “data demonstrate for foxes the kind of variability in similar characters and functions that is often observed in the domestication of other species of animals.” Because all domesticated animals have ‘done the same thing’ (in terms of phenotype traits), then this must be an implication of domestication and not an innate genetic quality of the fox population.

It is from these conclusions that the next post will start to make conclusions that relate to the domestication of dogs.  As our dogs display the domestication characteristics of the fox, this experiment is valid to our understanding of the history of dogs.

References: Continue reading

01/9/11

Paucity in Dog Science

I’ve always loved the quote, “If you put two dog trainers in a room, the only thing they will agree upon is that the third dog trainer is wrong.” Any issue in the dog world is like this: Vaccinations, feeding dogs, desexing, dog-dog interactions… Anything that involves dogs almost undoubtedly also involves some conflicting ideas.

In my opinion, these conflicts are caused by the paucity in scientific literature on dogs. There is a lot of material out there about dogs, but not a lot of it has been studied scientifically. If dogs were studied in this way, maybe we would have less conflict and more solid answers on the right things to be doing with our animals.

So why aren’t we researching dogs? Continue reading